导读 | 当 U-Boot 将设备树加载到内存指定位置后,ARM 内核的 SoC 以通用寄存器 r2 来传递 dtb 在内存中的地址。kernel 获取到该地址后对 dtb 文件做进一步的处理。 |
当使用 bootm 加载 kernel 镜像时(bootz 是对 bootm 的一种封装以及功能扩展,实质一样)。U-Boot 跳转到 kernel 的入口函数是 boot_jump_linux
这个函数的 C 文件在 arch/arm/lib 下,说明设备树的传递的方式是与 SoC 架构相关的。不同的 SoC 在 bring-up 时,这个函数格外重要,这是 U-Boot 与 kernel 之间衔接、交互信息的一个关键 API。U-Boot 的这个函数执行结束后,将 CPU 的控制权完整的交给 kernel。
/* Subcommand: GO */ static void boot_jump_linux(bootm_headers_t *images, int flag) { ... debug("## Transferring control to Linux (at address %08lx)" \ "...\n", (ulong) kernel_entry); bootstage_mark(BOOTSTAGE_ID_RUN_OS); announce_and_cleanup(fake); if (IMAGE_ENABLE_OF_LIBFDT && images->ft_len) r2 = (unsigned long)images->ft_addr; else r2 = gd->bd->bi_boot_params; ... }
r2 作为存放设备树地址的寄存器,其取值有两种方式,分别是例化 bootm_header_t 这个数据结构的 ft_addr,以及利用 U-Boot 的板级启动参数作为设备树的地址。
数据结构 bootm_header_t 的定义如下,供各种内核的 SoC 使用,每家厂商根据自己 CPU 的特点对各个成员进行不同的例化。
/* * Legacy and FIT format headers used by do_bootm() and do_bootm_<os>() * routines. */ typedef struct bootm_headers { ... char *ft_addr; /* flat dev tree address */ ulong ft_len; /* length of flat device tree */ ... } bootm_headers_t;
用 bootm_header_t 的方式,U-Boot 需支持设备树以及文件非空。
ft_len 以及 ft_addr 属于 bootm_header_t,在 U-Boot 解析镜像文件时,实例化这两个成员。函数调用栈如下:
do_bootz(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[]) -bootz_start() --bootm_find_images(int flag, int argc, char *const argv[], ulong start,ulong size) ---boot_get_fdt(flag, argc, argv, IH_ARCH_DEFAULT, &images,&images.ft_addr, &images.ft_len); u-boot-v2021.04/common/image-fdt.c
这种属于比较古老的一种方式了,目前基本不会采用。bi_boot_params 是一个存放内核启动参数的地址,通常是在板级初始化中进行指定。
代码执行到此处,r2 是否为预期的值,一是可以通过打印的方式、再有使用调试工具连上去确认。
解析分两个阶段,第一阶段进行校验以及启动参数的再调整;第二阶段完成设备树的解压,也就是将设备树由 FDT 变成 EDT,创建 device_node。
kernel 启动日志中与设备树相关的第一条打印如下,也就是打印出当前硬件设备的模型名,"OF: fdt: Machine model: V2P-CA9" 。
Booting Linux on physical CPU 0x0 Linux version 5.4.124 (qemu@qemu) (gcc version 6.5.0 (Linaro GCC 6.5-2018.12)) #3 SMP Fri Jun 25 15:26:02 CST 2021 CPU: ARMv7 Processor [410fc090] revision 0 (ARMv7), cr=10c5387d CPU: PIPT / VIPT nonaliasing data cache, VIPT nonaliasing instruction cache OF: fdt: Machine model: V2P-CA9
这个模型名是在设备树文件的头部定义的,定义当前设备的总体名称。
// SPDX-License-Identifier: GPL-2.0 /* * ARM Ltd. Versatile Express * * CoreTile Express A9x4 * Cortex-A9 MPCore (V2P-CA9) * * HBI-0191B */ /dts-v1/; #include "vexpress-v2m.dtsi" / { model = "V2P-CA9"; ... }
但这并不是 kernel 对设备树第一次进行处理的地方。在此之前已有其他的操作。函数调用栈如下:
setup_arch(char **cmdline_p) arch/arm/kernel/setup.c atags_vaddr = FDT_VIRT_BASE(__atags_pointer); setup_machine_fdt(void *dt_virt) arch/arm/kernel/devtree.c early_init_dt_verify() of_flat_dt_match_machine() drivers/of/fdt.c early_init_dt_scan_nodes(); __machine_arch_type = mdesc->nr;
第 2 行、__atags_pointer 是 dtb 在内存中的地址,这个地址在汇编阶段(若镜像为 zImage,那么在解压缩阶段就完成了)便获取到了。由于执行到 setup_arch 时 mmu 已经使能并且 4K 的段页表也已经完成了映射,而 U-Boot 传递给 kernel 的设备树 fdt 地址属于物理地址,因此需要将物理地址转换成虚拟地址。
head-common.S .align 2 .type __mmap_switched_data, %object __mmap_switched_data: #ifdef CONFIG_XIP_KERNEL #ifndef CONFIG_XIP_DEFLATED_DATA .long _sdata @ r0 .long __data_loc @ r1 .long _edata_loc @ r2 #endif .long __bss_stop @ sp (temporary stack in .bss) #endif .long __bss_start @ r0 .long __bss_stop @ r1 .long init_thread_union + THREAD_START_SP @ sp .long processor_id @ r0 .long __machine_arch_type @ r1 .long __atags_pointer @ r2
第一阶段对设备树的配置主要包括:
A 对 dtb 文件进行 crc32 校验,检测设备树文件是否合法 early_init_dt_verify()
B early_init_dt_scan_nodes() /* Retrieve various information from the /chosen node */ of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line); /* Initialize {size,address}-cells info */ of_scan_flat_dt(early_init_dt_scan_root, NULL); /* Setup memory, calling early_init_dt_add_memory_arch */ of_scan_flat_dt(early_init_dt_scan_memory, NULL); C 更新__machine_arch_type D 更新 chosen
上面这个 chosen 信息可以在 kernel 起来后再次查看做了哪些修改。
第二阶段单纯的是将设备树 ABI 文件进行解压缩,由 FDT 变成 EDT,生成相应的 device_node 结点。这个阶段的函数调用栈如下:
unflatten_device_tree(); *__unflatten_device_tree() /* First pass, scan for size */ size = unflatten_dt_nodes(blob, NULL, dad, NULL); /* Second pass, do actual unflattening */ unflatten_dt_nodes(blob, mem, dad, mynodes); unflatten_dt_nodes() populate_node()
device_nodes 结点如下:
device_node 创建完成后,kernel 创建 platform_device 时依据这个阶段完成的工作情况进行对应的设备注册,供驱动代码使用。
原文来自:
本文地址://gulass.cn/linux-kernel-analysis.html编辑:roc_guo,审核员:逄增宝
Linux大全:
Linux系统大全: