本书是一本关于推荐系统从入门到进阶的读物,采用“理论+实践”的形式展开,不仅对各种推荐算法进行了介绍,还对算法所涉及的基础理论知识进行了补充。

全书共分为3篇:第1篇是“推荐系统的背景介绍和入门”,包括走进推荐系统、搭建你的一个推荐系统和推荐系统常用数据集介绍;第2篇是“推荐系统涉及的算法介绍、冷启动和效果评估”,包括数据挖掘——让推荐系统更懂你、基于用户行为特征的推荐、基于标签的推荐、基于上下文的推荐、基于点击率预估的推荐、推荐系统中的冷启动和推荐系统中的效果评估;第3篇是“推荐系统实例”,包括搭建一个新闻推荐系统、搭建一个音乐推荐系统、搭建一个图书推荐系统和业界推荐系统架构介绍。

书中的实例开发几乎都是基于公开的数据集进行的,当然也涉及一些网络中获取的数据,其最终目的都是让读者能够更好地理解推荐算法,更直观地认识推荐系统。书中所涉及的数据集和实例代码都会提供给读者,这不仅在一定程度上方便读者学习,而且为以后的工作提供了便利。本书非常适合有一定编程基础、对推荐系统感兴趣的读者,希望用推荐算法完成设计的高等院校计算机或电子信息专业的学生,准备开设推荐系统实践课的授课老师,学习过Python、希望进一步提升编程水平的开发者,初学数据挖掘、机器学习的算法工程师或数据分析师阅读使用。


根据中华人民共和国国家版权局相关法规,本站不提供该PDF电子版书籍
您可以进入交流社群中继续寻找资料或购买正版书籍

Linux交流群

技术交流社群://gulass.cn/club

Linux书籍在线阅读://gulass.cn/chapter-00.html



本文原创地址://gulass.cn/linux-python-little.html编辑:向金平,审核员:逄增宝