导读 | 在日常爬虫练习中,我们爬取到的数据需要进行保存操作,在scrapy中我们可以使用ImagesPipeline这个类来进行相关操作,这个类是scrapy已经封装好的了,我们直接拿来用即可。 |
在使用ImagesPipeline下载图片数据时,我们需要对其中的三个管道类方法进行重写,其中 — get_media_request 是对图片地址发起请求
— file path 是返回图片名称
— item_completed 返回item,将其返回给下一个即将被执行的管道类
那具体代码是什么样的呢,首先我们需要在pipelines.py文件中,导入ImagesPipeline类,然后重写上述所说的3个方法:
from scrapy.pipelines.images import ImagesPipeline import scrapy import os class ImgsPipLine(ImagesPipeline): def get_media_requests(self, item, info): yield scrapy.Request(url = item['img_src'],meta={'item':item}) #返回图片名称即可 def file_path(self, request, response=None, info=None): item = request.meta['item'] print('########',item) filePath = item['img_name'] return filePath def item_completed(self, results, item, info): return item
方法定义好后,我们需要在settings.py配置文件中进行设置,一个是指定图片保存的位置IMAGES_STORE = 'D:\\ImgPro',然后就是启用“ImgsPipLine”管道,
ITEM_PIPELINES = { 'imgPro.pipelines.ImgsPipLine': 300, #300代表优先级,数字越小优先级越高 }
设置完成后,我们运行程序后就可以看到“D:\\ImgPro”下保存成功的图片。
完整代码如下:
spider文件代码:
# -*- coding: utf-8 -*- import scrapy from imgPro.items import ImgproItem class ImgSpider(scrapy.Spider): name = 'img' allowed_domains = ['www.521609.com'] start_urls = ['//www.521609.com/daxuemeinv/'] def parse(self, response): #解析图片地址和图片名称 li_list = response.xpath('//div[@class="index_img list_center"]/ul/li') for li in li_list: item = ImgproItem() item['img_src'] = '//www.521609.com/' + li.xpath('./a[1]/img/@src').extract_first() item['img_name'] = li.xpath('./a[1]/img/@alt').extract_first() + '.jpg' # print('***********') # print(item) yield item
items.py文件
import scrapy class ImgproItem(scrapy.Item): # define the fields for your item here like: # name = scrapy.Field() img_src = scrapy.Field() img_name = scrapy.Field()
pipelines.py文件
from scrapy.pipelines.images import ImagesPipeline import scrapy import os from imgPro.settings import IMAGES_STORE as IMGS class ImgsPipLine(ImagesPipeline): def get_media_requests(self, item, info): yield scrapy.Request(url = item['img_src'],meta={'item':item}) #返回图片名称即可 def file_path(self, request, response=None, info=None): item = request.meta['item'] print('########',item) filePath = item['img_name'] return filePath def item_completed(self, results, item, info): return item
settings.py文件
import random BOT_NAME = 'imgPro' SPIDER_MODULES = ['imgPro.spiders'] NEWSPIDER_MODULE = 'imgPro.spiders' IMAGES_STORE = 'D:\\ImgPro' #文件保存路径 LOG_LEVEL = "WARNING" ROBOTSTXT_OBEY = False #设置user-agent USER_AGENTS_LIST = [ "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/22.0.1207.1 Safari/537.1", "Mozilla/5.0 (X11; CrOS i686 2268.111.0) AppleWebKit/536.11 (KHTML, like Gecko) Chrome/20.0.1132.57 Safari/536.11", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.6 (KHTML, like Gecko) Chrome/20.0.1092.0 Safari/536.6", "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.6 (KHTML, like Gecko) Chrome/20.0.1090.0 Safari/536.6", "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/19.77.34.5 Safari/537.1", "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.9 Safari/536.5", "Mozilla/5.0 (Windows NT 6.0) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.36 Safari/536.5", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3", "Mozilla/5.0 (Windows NT 5.1) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_0) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3", "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3", "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3", "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3", "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.0 Safari/536.3", "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/535.24 (KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24", "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/535.24 (KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24" ] USER_AGENT = random.choice(USER_AGENTS_LIST) DEFAULT_REQUEST_HEADERS = { 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', 'Accept-Language': 'en', # 'User-Agent':"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36", 'User-Agent':USER_AGENT } #启动pipeline管道 ITEM_PIPELINES = { 'imgPro.pipelines.ImgsPipLine': 300, }
以上即是使用ImagesPipeline下载保存图片的方法,今天突生一个疑惑,爬虫爬的好,真的是牢饭吃的饱吗?还请各位大佬解答!
原文来自:
本文地址://gulass.cn/python-scrapy-imagespipeline.html编辑:xiangping wu,审核员:逄增宝
Linux大全:
Linux系统大全: